Marshall Institute's Blog

Marshall Institute's Blog

Current Articles | RSS Feed RSS Feed

Process Safety Management Webinar

  
  
  
  

On February 13th, 2014 Marshall Institute conducted a 1-hour free webinar on the topic of Process Safety Management (PSM).   The webinar, presented by senior consultant John Ross, covers the elements of PSM as it relates to both companies that handle highly hazardous chemicals and those who do not but would benefit from adopting some key practices and behaviors of PSM.   John emphasizes the importance of PSM as an organization-wide focus.  

This webinar is valuable for both current PSM practitioners and newbies. The recorded webinar is now available.  Click on the image below to begin the recording.   If you have questions or feedback following from watching the recording please leave messages in the comment boxes below. 

 

 


Greg Folts

Tom Furnival

Business Development Manager

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

 

 

How PSM-NEP applies to non-chemical plants

  
  
  
  

 

reccomendedreading   It is recommend that you read John Ross' article  "Making Sense of Proces Safety" posted by Plant Engineering before reading this blog post. 


Process Safety Management, specifically the National Emphasis Program (PSM-NEP) might be terms and acronyms that don’t make any sense unless you are in a facility that works with or around highly hazardous chemicals (HHCs).  It would be a very big mistake to think that this OSHA initiative doesn’t apply to you.  Many of the activities that maintenance and engineering perform each day are applicable to PSM and Non-PSM plants.  The only real difference would be in the level and degree of documentation required.  Although it wouldn’t be a bad practice to document your activities as if you were under the watchful eyes of OSHA through a PSM program.

There is a significant chance that although your facility is not PSM mandated, you do follow some national or international quality initiative such as ISO or several of the other professional doctrines.  All of which require extensive and ‘auditable’ documentation.

There is little doubt that many maintenance organizations are very good at ‘doing’ and not so good at ‘documenting’.  Unfortunately, if it isn’t documented, in many cases, it didn’t happen.

OSHA even made it part of the official record in one of their Instructions that “employers may have an extensive written process safety management program, but insufficient program implementation.” In other words, we don’t do what we say we do.  This probably doesn’t just happen with PSM processes.

Check back next week as we talk about getting started with a PSM-NEP awareness and readiness at your facility. 

 


Greg Folts

John L. Ross

Senior Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

The History and Purpose of PSM-NEP

  
  
  
  

 

 

reccomendedreading   It is recommend that you read John Ross' article      "Making Sense of Proces Safety" posted by Plant Engineering before reading this blog post. 

Process Safety Management was initiated by OSHA in 1992 as a way to respond with government oversight of industries using Highly Hazardous Chemicals (HHCs).  Events prior to that date, involving the infrequent release of HHCs had sometimes resulted in catastrophic damage, injuries, and even death.  Clearly, unchecked processes added to a volatile situation sometimes make things worse; much worse.

In September 1994, OSHA issued Instruction CPL 02-02-045, Process Safety Management of Highly Hazardous Chemicals-Compliance Guidelines and Enforcement Procedures.  This instruction ceded that the Program Quality Verification (PQV) inspections required great resources and limited the number of inspections that could be accomplished.  This was a program that didn’t have the effect that was desired.

Even with OSHA’s good intent, catastrophic incidents were still happening, especially in the petroleum industry:

  • 2004: Gallup, NM, 6 injured
  • 2005: Texas City, TX, 15 killed, 170 injured
  • 2005: Bakersfield, CA, 1 killed
  • 2007: Dumas, TX, HHC release and fire
  • 2008: Big Spring, TX, LPG release and explosion

 In 2007, OSHA initiated the Refinery National Emphasis Program (NEP) to zero in on the factors that most affected process safety in refineries.  By all standards the program was successful.  There were certainly still incidents in the refinery industry, but the nature and the resulting damage were greatly decreased.  Still more work and inspections would need to be done.

Due to the success of the NEP in the refinery industry, OSHA initiated a pilot program in the other facilities that dealt with HHCs.  This pilot program became official, nationwide in 2011 through OSHA Instruction CPL 03-00-14, PSM Covered Chemical Facilities National Emphasis Program; CHEMNEP for short.

The refinery NEP and the CHEM NEP are two different programs, but each involves a closer look and scrutiny of 14 major elements:

  1. Employee Participation
  2. Process Safety Information
  3. Process Hazard Analysis
  4. Operating Procedures
  5. Training
  6. Contractors
  7. Pre-Start Up Review
  8. Mechanical Integrity
  9. Hot Work Permit
  10. Management of Change
  11. Incident Investigation
  12. Emergency Planning and Response
  13. Compliance Audits
  14. Trade Secrets 

In the following blog posts I will go in to more detail in all of the 14 elements.  If you have experience with NEP and/or CHEM NEP let me know what you think of your PSM program and how you've improved your safety and process of HHC.


Greg Folts

John L. Ross

Senior Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

PM Optimization as a Routine

  
  
  
  

Anyone that has ever tended or raised livestock , be it rabbits, chickens, goats or cattle, knows that routines are important.  Without routines, you run the risk of causing   undue suffering on the part of your animals or end up with a monumental mess to clean up.

Unfortunately, when Preventive Maintenance Optimization (PMO) is considered, most people immediately revert, in their mind, to the concept of a workshop.  However, the fact is that the most effective form of PMO is that which takes place incrementally, over time, via routines and feedback.

One of the  routines  involves regularly scheduling a planned PM.  Planned, meaning that the conduct and materials involved in the PM are well laid out and itemized.  Scheduled, meaning that this work was known, at least 72 hours in advance.

Another routine that optimizes the PM is the routine of feedback. The feedback of your maintenance personnel is the most valuable form of intelligence reinforcing the continuous improvement of your maintenance systems.

Using the livestock example: if you were new to  tending animals,   over time, you would change the way you did things to limit trauma to your stock, increase the efficiency of the process and leave yourself as little a mess to clean up, after the fact, as possible.

In the same light, your maintenance personnel will have valuable input to the planning and scheduling of any given PM task after having to put tools to the equipment.  They will have a better sense of the order of tasks, frequency, efficacy of the lubrication process, effectiveness and discipline of the basic equipment care standards (autonomous maintenance), necessity or obsolescence of certain checks, frequency of replacement, and the quality of parts/storeroom supplies.

This knowledge often goes to waste for the organization as a whole, because there is no routine in place to take advantage of this information in association with the closeout of the PM.  This is the most powerful and effective form of PMO and it is also the most neglected.  Remember, things that you do as a form of common sense in your personal life require standardization in business because there is more than one person involved in the activity.  Your team members can’t read your mind.

There are times where priority and time make the PMO workshop the best option, but establishment of effective routines equate to a culture change.  Positive culture changes will always outdistance the benefit of periodic workshops over time.

The more effectively you capture the wisdom and experience of your people, the better the optimization of your PM program.

 


Greg Folts

G. Keith Diepstra

Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

Where to Start? Building a World Class MRO Process

  
  
  
  

Make your Storeroom World ClassIn practice, it’s easier to ‘build’ a world class MRO process from one that is mature and functioning, rather than from scratch.  Consider your process that has been inefficiently working for years; delivery both poor service and great inconvenience.  This is truly a more enviable position than starting with an empty warehouse.

Why?  Think of all the great examples you already have of “how not to do something”.  Thomas Edison so cleverly stated that he didn’t have thousands of failed experiments when creating a light bulb; he just learned 10,000 ways not to do it.

We’ll save you 9,991 attempts by giving you a 9 step outline to use in building a world class MRO process.   It’s like flipping a switch; after all, what could be easier?

Step 1:  Conduct a parts needs analysis

How do parts end up in the storeroom?  That’s a rhetorical question; the most likely scenario is “we really don’t know”.  Technically, when the equipment was first commissioned, the OEM should have provided a suggested spare parts list.  From that initial offering, and after years of use, the maintenance/engineering departments add to (and theoretically subtract from) the MRO materials stocked for that specific machine.  After a long disconnected relationship between the storeroom and maintenance, we end up with having lots of parts, but never the right part.

All MRO material in the storeroom should be in active support of current plant equipment.  If the spare components do not meet this threshold, remove them.  Establish a priority of equipment to consider for and MRO review.  Determine what you have in stock, in support of that equipment, review previous work order history and interview the skilled trades and get a sense of what should be stocked and in what quantity. 

Use a methodology like an ABC classification to break down your MRO material in terms of its criticality.  Also, create the critical spare parts formula to carefully consider and stock these most valuable items.

And, most importantly, make sure your MRO material on hand is in perfect alignment with your maintenance strategy.  This is the oft forgotten step.

Step 2:  Setup/Layout

Nothing sets the tone for service and convenience like the layout of the area itself.  Another ABC type of classification could be applied to establish a logical layout.  A very effective layout might include an open stock area, one that might have been referred to as ‘free stock’ in the past.  Behind the counter, MRO items are stocked so that the ‘A’ category items are closest to the window.  Items considered to be ‘A’ items follow that classic Pareto-80/20 rule.  ‘A’ items are those items that make up 80% of the issues.  Further from the window are ‘B’ then ‘C’ items.  Large, bulk items are further back still, and then critical spare parts.

Step 3:  Staffing

Company attempts and insistence on keeping overhead low has really affected MRO staffing levels.  This can negatively affect both service levels and security/control of stock as well.  At a minimum, store room staffing should be consistent with plant operations; 24x7 or 8x5.  Also, consider all the functions of store room personnel:  receiving, reconciling, kitting, issuing, etc.   There is a limit to line-items per store room clerk.

Step 4:  Control 

If it is impossible to staff the storeroom 24/7, access has got to be limited and controlled.  There is no gray area in this mandate.  All receipts and issues are entered into the CMMS, and all items issued from stores are assigned to a work order; again, no gray area. 

The ‘control’ aspect of a world class storeroom also includes low-level authority to handle inventory adjustments with slow moving, idle, or obsolete parts.

Step 5:  Managing the process

At some point, in fact, a requirement to be truly world class, all the processes performed in the storeroom have to be reduced to processes IN WRITING.  How can we possibly expect to have our procedures followed if they aren’t written down?  Write down the process, train people to the process.  Modify the process as necessary.

A common prescription for most companies is to charter and launch as Stores Stock Committee.  This high level oversight committed guides and supports the tactical work performed by those in the storeroom.

Step 6:  Service

Window issues should be prompt and efficient.  The written process steps indicating the correct method to use should clearly identify how the service is prompt and efficient.  Keep it simple; the idea is to develop process steps that are easy to repeat.  Practice doesn’t make perfect as much as practice makes permanent.

Storeroom kitting for enhanced planning and scheduling are processes within the storeroom sphere of responsibility that have to be considered when developing a service definition.

Step 7:  Procedures

The list of procedures is far too long to list in a blog.  Suffice to say, the list is divided into tactical and strategic.  The strategic concerns are big, fiscally critical ‘decisions’ such as reorder point and economic order quantities.  Parts standardization and critical spares evaluations are other high level strategic considerations.

The tactical sphere provides attention to the more dynamic and personal aspects of an MRO operation:  cycle counting, receiving, purchasing, etc.

Step 8:  Options

Some world class storerooms also participate in classic storeroom activities; they just do them at a very high level of performance.  These include tool management, managing a project spare parts laydown area, and chemical/flammable storage.

Step 9:  Supplier Involvement

A high performing storeroom and MRO operation tends to be very effective at establishing strategic sourcing relationships.  The true world class processes can handle expanded open stock offerings, vendor managed inventory, and conduct supplier performance audits.

 

I'd like to hear from you about your experience in creating an effective MRO storeroom; what's gone really well, and where did you have problems? Of these 9 steps, where have you experienced the most problems, or had the most difficulty getting the process to 'stick'?

Leave me a comment below! 

 


Greg Folts

John L. Ross

Senior Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

Design for Reliability - Part 4 of 6

  
  
  
  

Oil and Gas Series


While senior management may embrace the reliability philosophy, their bias may lean towards the profit objective than the maintenance and failure prevention objective, which is associated with costs not profits.  If there is opportunity to influence the design, especially in a retrofit, expansion, or brownfield, then that’s one of the best places to start in cost reduction of maintenance.   If not, an alternative may be with the influence of the management of accounting or finance departments.

In some cases the financial and/or accounting department reports that show the maintenance costs incurred over the life of the equipment exceeds the initial cost. Reliability unfortunately becomes known as a band aid and not a cure for availability.  While reliability is not the cure all, it can be a contribution to reducing overall life cycle costs.   The following is some tips for you to work with your management in properly evaluating what the results of you LCCA, Life Cycle Cost Analysis, means from a reliability perspective.     

By involving yourself in the life cycle cost analysis management is loaded with qualitative data such as:

  • Understanding when costs begin to exceed profits and provide them options from a maintenance perspective for CAPEX and OPEX
  • The real intersection point between cost and profit in terms of purchasing or renting equipment
  • Labor costs associated with storage of spares, maintenance and time to repair
  • Tradeoff between software upgrades or disposal costs with initial costs
  • How supply chain impacts time to repair on equipment that has failed

This additional understanding to support their LCCA, may prompt them to better compare alternatives for LCCA results.  It helps shift the preconceived biases formed about maintenance and reliability.  Last, this shows reliability to be a part of the profit solution.

 


jebll

Jennifer Bell
Oil & Gas Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

Design for Reliability - Part 3 of 6

  
  
  
  

What does the word performance mean to your organization? When I hear the word performance I envision a Formula Race Car at the head of the pack or an Olympic athlete crossing the finish line. Thinking specifically of the finish line and high performance, I think of all the stages it took to get to the point of crossing the finish line as number one. When I think of high performing electrical or mechanical systems at work I realize whether in a refinery, offshore platform or in 5,000 feet of water sitting on the ocean floor, there are some common themes.

While subsea reliability programs have heavily relied on models and activities developed and mastered in manufacturing and refining, subsea reliability is forced into a philosophy that creates a systems approach in its operations.

Systems reliability in subsea considers the degree of standardization in the equipment and in the tools used to repair and maintain the equipment. It allows for almost any operation to be suspended if operational limits are on the edge of being exceeded. Listed below are measures taken when limits are on the edge of being exceeded:

  •  Equipment such as valves and sensors have redundancy built-in
  •  Components are used that have a high resistance to wear and  corrosion
  •  Condition monitoring is performed continuously on all critical pieces of  equipment and on equipment that have key interfaces with critical  equipment


High performance may cost time money and resources whether you are an athlete, race car driver or a high-head pump in a refinery or an electric submersible pump in 6,000 feet of water, the payback on high performance lends to value creation.

Not all reliability high performance measures have to be gold plated to create value. Early design of the system is much like the training the athlete puts himself through. Anything that can be addressed before start up creates higher performance. These include small process improvements in the areas of:

  •  Spare parts identified early on for the system is commissioned
  •  Systems interfaces defined
  •  Cost on “Effort of Maintenance”
  •  KPIs (Key Performance Indicators) 
  •  Failure Assessments before start-ups; with contingency measures in    place
  •  Preparing for operational limits before they occur


Subsea design, engineering, construction and operations integrates small process improvements along with redundancy and maintenance thought out in the design yielding performance targets that it can give back to traditional and core reliability methods.

Subsea reliability integrates improvements in design, construction, commissioning and operations. Each one of these stages considers the long term performance and how maintenance planning can be improved to deliver better system reliability. The performance targets set for subsea systems are a best practice that traditional reliability methods can leverage.



jebll

Jennifer Bell
Oil & Gas Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter


Design for Reliability - Part 2 of 6

  
  
  
  

Teaching the Millenials a sound reliability strategy early in their career (the Matures, Baby Boomers and Gen Xers too) can be the critical component of a strong manufacturing strategy. 

Millenials have been categorized as seeing the world as a union of people and countries connected electronically and technologically 365 days a year, 24 hours a day, 7 days a week; spending a lot of time interacting with social media and using more than one medium at a time, with parents that catered to their needs more than the rest of us.  Some see them as most times arrogant but, they may actually be the most productive, innovative generation in history (Sujansky, 2009).   What in the world does this have to do with reliability? – a lot.  Building a powerful brand comes with a strong reliability strategy.  Every organization, no matter what it may be manufacturing, requires a powerful and strong reliability strategy lined up with its corporate strategy. In today’s climate this includes being connected and collaborating 365 days a year, 24 hours a day, 7 days a week; spending a lot of time interacting with social media and using more than one medium at a time not only with the corporate strategy but with people, processes, programs, and performance beyond internal and external boundaries. Reliability has evolved from a reactive, "keep the failures quiet," enviroment brought on by pressures to meet production/manufacturing targets to the promotion and use of:

  • Effective Communications
  • Best practices approach
  • Modern diagnostic tools
  • Responsiveness

Maintenance and Millennials as a strategic tool are as relevant as understanding chronic problems with equipment and a competitive edge.  While the Millennials may not understand the root cause of many failures, they can be a modern diagnostic tool at your fingertips to eliminate common root causes or find the counterpart of an outdated spare part. 

For example, I was recently working with a group of Millennials.  We were talking about communication styles between 20 something’s and "older" people and age discrimination against the Millennials.  One thing that came out is how these Millennials have an app for everything.  The short of the story is an intern was tasked to observe some surveying being conducted by a construction company and after about 20 minutes watching them scramble to calibrate some equipment he stopped them and said "hey, I have an app for that" they stopped, let him download it, and in the end he saved them a few thousand dollars in prep time over the summer. 

Don’t have a millennial in your department? Not a problem.  Millenials' attitude can be found in all the four of the generations and have been but more so with the Boomers.  According to Sujansky’s, Keeping the Millennial’s, the relationship with technology is shared – the difference is the platform.  Boomers are post WWII technology, While  Millennials are post computer technology.  Though their platforms for doing so are generations apart, both have an affinity for putting together technology to practice and the understanding of connectivity, collaboration and responsiveness is shared.

References: 
Sujansky, J.G.  2009.  Keeping the Millennials.  John Wiley & Sons.  New Jersey


jebll

Jennifer Bell
Oil & Gas Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter



CMMS Horror Stories: 5 Reasons a CMMS Implementation Can Fail

  
  
  
  

As much as some CMMS vendors don’t like to admit it, not every CMMS implementation has been a resounding success.

The right software can foster a positive institutional change, radically altering the trajectory of a company.

But if you speak with enough maintenance managers, you’re bound to hear at least one or two CMMS horror stories. These are cases where organizations didn’t get everything they hoped for – where software had to be scrapped shortly after installation.

Fortunately, with the right research and preparation, you can avoid these potential pratfalls. Here are five of the most common reasons a CMMS implementation sometimes doesn’t pan out – and how to avoid them.

1) Lack of Vendor Support

Oftentimes, the failure of a CMMS has less to do with your maintenance staff and more to do with the initial purchasing decision by upper management.

Not all CMMS packages were created equally. Sometimes a low advertised price comes with some pretty big asterisks:  critical features end up costing extra, and your organization won’t always have the budget to handle the hidden costs.

Moreover, some CMMS companies seem to have a sell-and-run mentality. These vendors are happy selling software, but don’t have the resources to properly support customers post-implementation.   

How to avoid: When making a CMMS purchasing decision, look for vendors with an established history of providing excellent service and support to their customers. Be wary of vendors who’ve been around for less than five years.

2) Lack of Training

Another popular oversight in the implementation stages of a CMMS is that minor little issue of making sure your staff (and management) knows how to use the software you paid for.

Some modern CMMS software packages, like MicroMain Maintenance, are designed to be easy to use. But any solution that offers a worthwhile feature-set will still require adequate training in order to take full advantage of it.

Some companies go into their CMMS implementation with the belief that they’re going to accomplish all the preparation they need with four hours of online training.

It’s probably not going to happen. What ends up happening is your maintenance staff will develop their own individual approaches for using the software, leading to a database that is messier and more confusing than it needs to be. Meanwhile, time-saving features you paid for will be sitting unused – and not just because your staff doesn’t know how to use them, but because your staff doesn’t even know they exist.

Avoid the Problem: Find a CMMS vendor with extensive training opportunities – and plan your budget accordingly. Good training will pay great dividends later on.

3) Lack of Clearly-Defined Objectives

Implementing a CMMS with no clear objective is like making a vague New Year’s Resolution. Telling yourself you’re going to eat better and exercise more is never as effective as having a fleshed-out exercising itinerary with specific dieting plans.

Similarly, it’s best to develop a project plan with your CMMS. Ask yourself exactly what you’re hoping to accomplish. Are you hoping to reduce paperwork? Optimize preventive maintenance? Reduce the time it takes to manage work orders? Increase the accuracy of your reports?

Your goals can only be achieve if they’re properly laid-out and understood.

Avoid the Problem: Develop a project plan with clear objectives and timelines. The more complete your roadmap, the more likely be to you’ll follow it.

4) Lack of Communication With Technicians

It’s often said that communication is the key to success. Well, yeah. Sounds pretty obvious. But when it comes to maintenance management software, sometimes that’s taken for granted.

Too many software implementation decisions happen without key staff members in the loop. Opening the floor for communication will prevent problems down the road and give you a better sense of what you’re hoping to accomplish.

Who should be in the loop? Your technicians using the software, your finance department, your IT staff—anyone whose job is going to be affected. Even if your CMMS doesn’t upset your fundamental maintenance habits, it will produce systemic changes. That’s a good thing! That’s what you’re paying for. But it’s important to include your team in the decision-making process.

Avoid the Problem: Schedule team-wide meetings to open the floor for discussion. Take input from everyone who is going to use the software to make the best purchasing discussions and help develop your project plan.

5) Keep Maintenance Management Best Practices In Place

The right CMMS can do a lot for your company. It can assign and track labor. It can help control part inventories. It can improve fleet management. It can optimize preventive maintenance scheduling.

But what it can’t do is perform the actual maintenance for your team. The maintenance best practices you’ve developed are paramount for your company, and although a CMMS will make maintenance management easier, it won’t offset inadequate maintenance habits. Some companies have had problems with technicians falsifying data, which no CMMS can guard against. The key to maintenance success lies in your hands.

Avoid the Problem: Continue following the maintenance best practices you’ve developed. Use your CMMS as a tool to accomplish your maintenance best practices—not replace them.



Greg Folts

MicroMain 

Corporation 

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter


Design for Reliability - Part 1 of 6

  
  
  
  

When I launched into the reliability profession, I thought condition monitoring was the center of the reliability universe. 

I was so focused on putting my hands on equipment to feel if it was running right or listening to it talk to me about its condition to determine when something was going to fail. The next step was ensuring my spare part was around.  It never occurred to me I may be able to prevent the failure from ever happening or at least extend the life of the component and system.  

I never thought of design improvements, manufacturing process or total system interfaces impacts to my failures, if I did it was a blame not a solution.  Budgets seem to be squeezed and limited for RCM and many times a lesson learned instead of a proactive event.   

I was frustrated with the design or at least what I thought was the design of many components and had no foresight to focus on a different type of bottom line. 

For companies looking for the bottom line, why not take good reliability practices and lessons learned out of OPEX and place a few strategic items in CAPEX, where improvements can make a large impact to OPEX. 

This is 1 out of 6 series that takes a look at reliability into research, design, manufacturing, commissioning  and operations.

Design for Reliability is simple good engineering practice.  Not many engineers start from zero with a design,  unless there is a patent or a ultra step changing product.  Most engineers and technicians use multiple sources of qualitative data to make design improvements.  This information comes from vendors, communities of practice, workshops and events hosted by NACE, United Association Union of Plumbers,  Fitters, Welders and HVAC Service Techs, International Council for Machinery Lubrication, and the Society for Maintenance and Reliability Professionals. Just as much these groups offer ideas for a different type of impact.

Over time, teams and management can assess the tradeoff between design improvements and operational maintenance efforts as well as understand operational performance goals through design for reliability, see Figure 1, CAPEX Vs. OPEX Impact to Bottom Line.

CAPEX vs OPEX

Figure 1. CAPEX vs. OPEX Impact to Bottom Line
 

What this provides for is designing out known failures modes such as corrosion, fatigue, mechanical connection, leaks, as well as design in redundancy, simplify the design.

While reliability has a scale that can vary from region and department within one company,  decreasing OPEX seems to be everyone’s center of focus with no room for flexibility. 

Want to increase the probability that your equipment will perform the intended function for a specified period of time under a given set of conditions? Then consider Design for Reliability.

Take a look at Marshall Institute's maintenance tips:

  • Total Productive Maintenance (TPM/TPR) Tips  Maintenance Tips 17, 21, 13, 5
  • Preventive/Predictive Maintenance Maintenance Tips  3, 1

If you are regularly performing any of these, the data that you need to share with your suppliers is already there.  While many pieces of equipment require minimum predictive maintenance regardless of reliability, the dialogue between shifts, departments, and suppliers will provide improved decision making and an impact to the bottom line.
 


jebll

Jennifer Bell
Oil & Gas Consultant

Find us on Facebook!  Facebook
Find us on Twitter  Twitter
Find us on LinkedIn  LinkedIn
Find us on YouTube  YouTube
Join Us! Subscribe to our e-Newsletter

All Posts

Subscribe by Email

Your email:

About Marshall Institute

Marshall Institute is an asset management consulting and training company dedicated to helping companies improve the maintenance contribution to their organizational performance. For over 35 years, Marshall Institute has provided world-class consulting and training services, led by experienced, knowledgeable consultants and training professionals producing tangible, measurable results for our clients.



Social Media

     






Browse by Tag